Optimization of Cleaning-In-Place (CIP) processes in bottled water industry

V. Davy, Nestlé Waters MT
AquaFit4Use Mid-Term Conference, Oviedo
15th June 2010
Introduction

CIP principles

Cleaning-In-Place (CIP):
- Fully or semi-automated, integrated cleaning technique that allows to clean closed or open circuits without dismantling equipments
- Standard CIP sequence:

 - **Alkaline cleaning**: To eliminate organic trace elements
 - **Rinsing**: To push out caustic
 - **Acid cleaning**: To eliminate mineral deposits
 - **Rinsing**: To push out acid
 - **Disinfection**: To kill/inactivate microorganisms
 - **Rinsing**: To eliminate CIP chemicals and prepare the line for production
Introduction
CIP principles

- Standard CIP sequence consumes:
 - **WATER**: preparation of chemical / hot water solutions, rinsing steps
 - **TIME**: preparation of CIP solutions, cleaning & disinfection steps, rinsing steps
 - **CHEMICALS**: alkaline, acid, disinfectant
 - **ENERGY**: heating and cooling

→ Need to optimize existing processes and/or investigate other technologies that could save water, time, chemicals, and energy
Prior to optimize water consumption during CIP processes, the key parameters (5 T’s) to ensure the effectiveness of CIP systems must be in place:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbulence</td>
<td>Flow velocity in all parts of the system being cleaned</td>
</tr>
<tr>
<td>Time</td>
<td>Duration of each step of the CIP procedure</td>
</tr>
<tr>
<td>Temperature</td>
<td>Of the cleaning solutions and water at the beginning and end of the circuit</td>
</tr>
<tr>
<td>Titration</td>
<td>Chemical concentration in the supply tanks, in the circuits</td>
</tr>
<tr>
<td>Technology</td>
<td>Design of CIP station, CIP network, complete water lines (from well to filler)</td>
</tr>
</tbody>
</table>
Focus on the reduction of water consumption during Cleaning-In-Place (CIP) processes

Two steps:

1. Optimization of existing CIP processes
2. Evaluation of alternative CIP technologies
1. Optimization of existing CIP processes
Methodology for data collection

➢ Collect information on CIP processes in several factories:
 ➢ Mapping of water circuits, including CIP circuits (P&ID, flow diagram)
 ➢ Description of CIP stations (design, P&ID)
 ➢ Description of CIP sequences per circuit, including water and chemicals consumption
 ➢ Summary of CIP consumption vs. production

Template_CIP data questionnaire
1. Optimization of existing CIP processes
Main outcomes from data collection

➢ The results have highlighted the importance of:

a) Good hygienic design of the installations:
 “Good cleaning cannot be achieved without hygienic design and engineering of the installations”

b) Design of CIP station

c) Optimization of rinsing step
1. Optimization of existing CIP processes
 a. Hygienic Design

- Materials & surface roughness:
 - **Materials:**
 - Be able to withstand mechanical, thermal and chemical actions
 - 304(L) or 316(L) stainless steel recommended
 - **Surface Roughness** (Ra) < 0.8 µm

- Pipes and equipments must be able to drain:
 - **Design to “self drain”**
 - Avoid abrupt changes in pipe diameter & concentric reductions
1. Optimization of existing CIP processes
 a. Hygienic Design

➢ Avoid dead ends in pipe connections:

Not preferred solution

Dead End / Difficult to clean

As short as possible (< 1.5 D)

Continuous line, no dead ends or crevices. EHEDG certified for cleanability

Hygienic solution – State of the art
1. Optimization of existing CIP processes
 a. Hygienic Design

➢ Avoid dead end in tanks:

Dead ends

Use hygienic fittings
1. Optimization of existing CIP processes
 a. Hygienic Design

- A minimum velocity is required in the cleaning agent to:
 - Create a mechanical shear stress to remove the soils from the wall (boundary layer where residues will deposit)
 - Transport the soil out of the line

→ A velocity of 1.5 m/s will guarantee enough shear stress & turbulent flow to remove the soils
1. Optimization of existing CIP processes
b. CIP station design

- **Single-use system**: cleaning solution is used only once and discharged to drain after use → single tank

Example:

(+)
- Simple, not very costly installation
- Could be applied for:
 - Small installations (decentralized CIP system)
 - Processes where cross-contamination is a concern
 - Heavy soiled equipments

(-)
- High operational costs
- Environmental impact
1. Optimization of existing CIP processes
b. CIP station design

➢ **Re-use system:** the same cleaning solution is used for a large number of cleaning operations (recover & reuse) → multi-tanks

Example:

- Lower operational costs
- Lower environmental impact
- Could be applied for:
 - Large installations (centralized CIP system)

- Installation can be complex and very costly
- Regular control of the cleaning power of cleaning solutions
1. Optimization of existing CIP processes
 b. CIP station design

➢ Recommendation: re-use system with monitoring tools

Conductivity meter

Temperature sensor

Flowmeter

CIP LOOP

filter

Heating

Tk 1

Tk 2

Tk 3

Effluent or Auxiliary water

WATER

Caustic

Acid

Disinfectant
1. Optimization of existing CIP processes
c. Rinsing step

- Rinsing time based on temperature and/or concentration (not only based on time)

- Reduce rinsing time between chemical solutions

- Re-use of rinsing water for other industrial water uses:
 - Based on temperature and/or conductivity value

→ Optimization on a case-by-case basis
1. Optimization of existing CIP processes

Conclusions

- Methodology to collect data on CIP processes

- Basic principles of hygienic design must be respected

- CIP station design: re-use system with chemicals recovery equipped with required monitoring tools

- Reduction of water consumption:
 - Optimization on a case-by-case basis through reduction of rinsing time and/or re-use of rinsing water for other industrial uses
Introduction
Content of study

➢ Focus on the reduction of water consumption during Cleaning-In-Place (CIP) processes

➢ Two steps:
 1. Optimization of existing CIP processes
 2. Evaluation of alternative CIP technologies
2. Alternative CIP technologies

Objective & methodology

Objective: evaluate alternative technologies that could help to save water, time, chemicals and/or energy

Technical survey:

- Literature review
- Information from suppliers
- Information from factories
- Technical survey
2. Alternative CIP technologies
Objective & methodology

Criteria used for the evaluation:

<table>
<thead>
<tr>
<th>Status of the technology</th>
<th>In development</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Available in the market</td>
</tr>
<tr>
<td>Technical feasibility</td>
<td>Could be applied for Cleaning-In-Place</td>
</tr>
<tr>
<td></td>
<td>Could be applied for bottling water industry</td>
</tr>
<tr>
<td></td>
<td>Integration into existing CIP processes</td>
</tr>
<tr>
<td>CIP efficiency</td>
<td>Cleaning efficiency</td>
</tr>
<tr>
<td></td>
<td>Disinfection efficiency</td>
</tr>
<tr>
<td>Consumption, Savings</td>
<td>Water, Time, Chemicals, Energy</td>
</tr>
<tr>
<td>Costs</td>
<td>Capital costs</td>
</tr>
<tr>
<td></td>
<td>Running costs</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>Material compatibility</td>
</tr>
<tr>
<td></td>
<td>Safety risks</td>
</tr>
</tbody>
</table>
2. Alternative CIP technologies
List of evaluated technologies

- Ice blasting
- Plasma cleaning
- Ultrasonic cleaning
- Supercritical CO₂
- “Whirlwind” technology
- Electrolyzed water
- Pulsed flow
- Air scouring

- Chemicals “2 in 1”
- O₃ disinfection
- ClO₂ disinfection
- Pigging
2. Alternative CIP technologies
Chemicals “2 in 1”

- **Principle:** Chemicals that clean and disinfect at the same time

1. Circulation of Cleaner
2. Addition of Disinfectant
3. Rinse

Cleaning & disinfection in 1 step
2. Alternative CIP technologies
Chemicals “2 in 1”

- **Pros & Cons - Summary:**
 - Available in the market with minimum capital costs
 - Seems to be as efficient as standard cleaners & disinfectants
 - Potential savings on water, time (and energy)
 - Higher chemical costs
 - Suitable for process of good hygienic design

- **Interesting products for factories where there is a need for additional production time**
2. Alternative CIP technologies
Ozone disinfection

Principle: Use ozonated water as CIP-disinfection step
2. Alternative CIP technologies
Ozone disinfection

Pros & Cons - Summary:

+ O₃ skid available in the market
+ Ozone-CIP: some applications in food & pharmaceuticals industries
+ Seems to be efficient on a wide range of micro-organisms
+ Potential savings on water, chemical (and energy)

- Capital costs
- Adjustment of CIP parameters is process-dependent
- Safety issues (O₃ gas)
- Material incompatibility with ozone

Interesting technology that could be further evaluated at industrial scale
2. Alternative CIP technologies
Chlorine dioxide disinfection

➤ **Principle:** Use of water containing chlorine dioxide as CIP-disinfection step

![Diagram of CIP system with chlorine dioxide disinfection](image-url)
2. Alternative CIP technologies
Chlorine dioxide disinfection

Pros & Cons - Summary:

+ ClO₂ generation skid available in the market
+ Seems to be efficient on a wide range of micro-organisms (but less than ozone)
+ Potential savings on water (and energy)
- Most applications with ClO₂: water disinfection, bottle rinsing (not for CIP)
- Capital costs
- Adjustment of CIP parameters is process-dependent
- Still chemical consumption
- Safety issues (ClO₂ gas)

Could be investigated at industrial scale but seems less interesting than ozone
2. Alternative CIP technologies

Pigging

- Principle: Circulation of a “pig” in a pipe to clean the pipe and remove deposits

Pigs

- Girard Polly-Pigs
- GEA pig

Diagram

- Launcher
- Pig
- Receiver

Labels

- Pig driving medium = Propellant
- Pig driving medium = Propellant

From GEA
2. Alternative CIP technologies
Pigging

Pros & Cons - Summary:

+/- Most applications are for product recovery; a few applications for pipe cleaning
+ Will enhance chemical cleaning (though mechanical action)
+ Potential savings on water and chemicals
- Need to investigate its efficiency on biofilm removal
- Can only be used in pipe designed for pigging
- Capital costs

Interesting technology that could be further evaluated at industrial scale for pipe cleaning
2. Alternative CIP technologies Pigging

- Additional information: Ice pigging:
 - Patented technology at Bristol university (UK)

+ Could be applied for all types of piping (no need for a specific design)
+ No need for launching & receiving station
+ No risk that the pig remains blocked in the pipe

→ Interesting technology that could be further evaluated at industrial scale for pipe cleaning
2. Alternative CIP technologies

Conclusions

- Technical survey carried out on alternative CIP technologies

- It has highlighted several “interesting” technologies:
 - Innovative chemicals
 - Ozone or chlorine dioxide disinfection as CIP-disinfection step
 - Pigging for pipe cleaning

- Next steps: industrial tests
THANK YOU FOR YOUR ATTENTION!